

Bringing AI APIs into the Classroom
with a JavaScript Coding Site

Mark Humphrys

School of Computing, Dublin City University, Glasnevin, Dublin 9, Ireland
Email: mark@ancientbrain.com (M.H.)

Abstract—With the growth of large-scale Artificial

Intelligence (AI) models has come the growth of AI Application
Programming Interfaces (AI APIs), where the model remains at
the remote site, and is called remotely via an API. The goal of
this work is to bring accessible coding for AI APIs into the
classroom. This paper describes two key innovations. First, a
new JavaScript coding site, “Ancient Brain”, designed for
education with a focus on AI. And second, the building of an
extensive set of open-source JavaScript AI API programs that
can be run by students in the browser and can also be edited and
modified by students in the browser (on Ancient Brain). A
search of coding sites struggles to find any comparable collection
of AI API JavaScript programs for students in existence
anywhere. While AI APIs can be called in any programming
language, this paper discusses the advantages of a
JavaScript-based system. We discuss issues such as public
versus hidden code, API key management, API response delays
and CORS issues, with consideration of how to address these in
an educational environment. Future work would be to build AI
API exercises for secondary school students using this starter
collection.

Keywords—Artificial Intelligence Application Programming
Interfaces (AI APIs), coding sites, education, open source, code
archives, JavaScript

I. INTRODUCTION

Recent years have seen an explosion of large-scale
Artificial Intelligence (AI) models from new companies such
as OpenAI, DeepMind and Cohere, and established
companies such as Meta, Google, and Microsoft. These
models are considerably larger than any made before in AI.
Some existing models have over 100 billion parameters [1].
GPT-4 from OpenAI is suspected to have over 1 trillion
parameters [2].

While small AI models can be downloaded by users to run
locally, this is not practical for these large-scale models [3].
For these, the model remains at the remote site and access is
provided through a programming Application Programming
Interface (API) which may be used by apps and third-party
programs in general. The standard way of calling these APIs
would be using HTTP POST from any programming
language. There may also be some form of webpage access,
such as the ChatGPT webpage [4].

API access to large models is often controlled with
subscriptions, to generate a revenue stream to recover some of
the massive costs involved in creating the model. There is
usually some form of free API entry level for testing, with a
limited amount of usage before subscription is required.

There are also more informal collections of AI models and
APIs, from large and small organizations and even individuals.
For example, Hugging Face [5] hosts over 500,000 AI models

and has API access. Rapid API [6] hosts tens of thousands of
AI and non-AI APIs.

The amazing products of generative AI, and other AI
functionality, have fast become part of the culture, and
educators are considering how to bring these into the
classroom. Much of the modern “AI in education” research
focus is on generative AI [7], in particular on generated text,
and in particular on ChatGPT, via manual web page usage [8,
9] rather than, as in this work, coders making API calls. Note
also that the student coders in this work made use of 39
different and diverse AI APIs, rather than just one
(ChatGPT).

The educational environment in [10] is constructed using
multiple AI APIs, with these APIs called at runtime. However,
it is not aimed at the students actually coding the API calls and
the overall environment themselves, which is the focus of this
work. The students in that work are users, not coders.

The organisation of this paper is as follows. We first
introduce the problem of making AI API coding accessible.
This motivates the coding site, which we explain in detail. We
explain how AI API programs can be created using the site.
We then survey the AI API collection created by the students.
We compare with related work, which suggests no similar
open-source, runnable AI API collection exists.

The problem addressed in this work is how can relatively
inexperienced student coders integrate calls to AI APIs into
their code. This could be done to study how AI models work,
to learn how to code APIs in general, or (probably the biggest
use) just to make coding itself more compelling.

In “Related work” below, we survey the literature and
online resources, which indicate that no diverse open-source
collection of runnable AI API programs for education exists.

This work then has two key innovations: (1) the creation of
a new coding site for education to (among other things) help
students code for AI APIs, and: (2) the construction by
students of a unique open-source AI API collection.

The latter collection is available for educators for further
use. We argue this is a step forward in making AI API coding
accessible at an early coding level. We show how students,
even at an introductory level, can integrate the intelligence of
remote AI projects into their coding creations. We argue that
this is an underexplored area in education with huge future
potential.

II. A CODING SITE FOR EDUCATION

 How can coding learners be helped to construct or modify
programs that make calls to AI APIs? They can of course be
left alone with the manual, but learning how to make a HTTP
POST to an API endpoint is hardly for the beginner.

272

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

doi: 10.18178/ijiet.2025.15.2.2240

Manuscript received August 21, 2024; revised September 4, 2024; accepted October 28, 2024; published February 14, 2025

For some years we have been engaged in a project to build
a shared coding environment to allow introductory coders
access to advanced coding functionality (like 3D graphics, AI
algorithms and AI APIs) in a way different to, and easier than,
building it all from scratch. This project was originally called
the “World-Wide-Mind” project and is now called “Ancient
Brain”. After experimentation with multiple technologies, we
built a site for collective and shared JavaScript coding in the
browser, which shall now be explained.

A. Ancient Brain

Our shared coding site is called “Ancient Brain”. It is
explained in detail in a separate paper [11]. Briefly, it is based
on the following principles:
1) All programs are in JavaScript.
2) All programs run in the browser, with no installation of

any software needed.
3) All programs are edited in the browser, with no

installation of any software needed.
4) The main site stores all the programs. Users (e.g., students)

can view collections of programs written by other users
(e.g., teachers, 3rd parties, and possibly other students).
Normal programs are public. We have an option to set
them to be hidden (not discoverable).

5) Users can run them securely, even though they are
untrusted code (e.g., by other users). Teachers can run
untrusted student code. This is thanks to the mature
JavaScript security model, fundamental to the Web [12].
Note also this is a forgiving programming environment,
where browsers will try to run bad JavaScript, even at the
risk of incorrectness [13].

6) Users can normally view the source code of the programs.
We will allow a program to opt out of this by
being hidden (not discoverable). We will allow a program
to partially opt out of this by having its code obfuscated.

7) Users can “clone” these programs to get a personal copy to
edit.

8) Users can edit their copy, run it, and save it to the server
for later use, and use by others.

Ancient Brain is live at ancientbrain.com. The reader is
strongly urged to simply go there now and start running
programs (which are called “Worlds”). You run Worlds by
clicking on them, with no install needed. Worlds can be
games, AI applications, general apps, coding challenges,
math demos, physics demos, quizzes, chat applications,
virtual worlds, museum tours, and more.

Fig. 1 is a screenshot of the home page as of Nov 2024,
showcasing a random four Worlds. The ones shown here are:
(1) “Complex World”, a World showing how to do Three.js
graphics on Ancient Brain. (2) “3D for Kids World”, a port of
a simple Three.js World from a book. (3) “AI Song
Generator”, a World that calls two AI APIs, MusicGen from
Meta and Stable Diffusion from Runway. (4) “Recognise any
image”, an AI World to recognize images using ML5 and
MobileNet. To find and run all these Worlds, go to the site,
and use the search box.

Ancient Brain is in use in multiple teaching courses at
Dublin City University, at both undergraduate and (taught)
postgraduate level. At time of writing, it hosts 10,840
JavaScript Worlds written by 2,358 coders. Experiments

have been run on bringing it into schools, and writing a course
or textbook for schools is at the top of future work. We are
seeking partners to work on this.

Fig. 1. Part of the home page of ancientbrain.com.

B. Ancient Brain Features

Some features of the Ancient Brain site of relevance to
education and AI are:
1) An option to obfuscate your JavaScript code. If chosen,

the public version of your code is obfuscated. When
another user runs it and views the source, they only see
obfuscated code. The owner of the code can see the plain
text code. We have a further option hidden URL, where
other users cannot find your code or run it.

2) “Teacher” and “Student” accounts. In a “Student” account,
all code is obfuscated and at hidden URLs. Other students
cannot see it. It is excluded from search and the URL is not
guessable. In a “Teacher” account, you can see and run all
code written by your students. You can view the plain text
code, and you can edit the code. Teachers can easily and
safely edit and even bug-fix student code and run it again
to see what difference changes make. This we believe is a
very powerful feature that makes marking a pleasure.

3) Support for AI. Support for the ML5 AI library [14]. You
can upload other AI JS libraries and use them.

4) Support for 2D and 3D graphics. Built-in graphics
libraries and many sample Worlds with open-source code.
Support for Three.js, P5, Phaser and native WebGL

273

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

coding. We also allow the making of text-only Worlds,
that are regular web pages with HTML elements.

5) Users can upload images, textures, music, sound effects,
JavaScript libraries, JSON data files and 3D models to use
in their Worlds. Uploads are public. You can reference
and use other users' uploads in your code.

6) Support for 3D models. Built-in libraries for embedding
3D models (e.g., houses, people) in Worlds. Sample
Worlds are provided. See “3D models” in the Ancient
Brain docs [15].

7) Support for physics in 3D Worlds. Built-in physics
libraries with gravity, momentum, etc. For example,
ammo.js [16].

8) WebSocket support for all Worlds. This allows real-time
communication between users running your World. Users
can write multi-user Web games and real-time chat. See
“Websockets” in the Ancient Brain docs [15].

9) Search engine for Worlds, users, and uploads. Code
search to search the JS code of all public programs.

For more features, and a more detailed introduction to
Ancient Brain, see [11]. Space does not allow here for
screenshots of the editor and other screens. Just to note that
school children with no coding experience have been able to
code on this site in their first lesson. We recommend the new
user goes immediately to one of the “starter tutorials” [17, 18]
to start coding on the site.

For an overview of the extraordinary range of non-AI
programs that users have created on the site, see [19].

III. AI APIS IN JAVASCRIPT

Given this JavaScript coding platform, how do we call AI
APIs? The standard way of calling AI APIs is by using a
HTTP POST request, providing input data to the POST.
Some simpler APIs use HTTP GET, with the data in the URL.
A HTTP request can of course be made from any normal
programming language.

The JavaScript needed can be quite complex. For instance,
the following will make a call to the GPT API at OpenAI [20].
Not shown are: (1) setting up the prompt and other data in
'inputdata', (2) setting up Ajax headers to use the API key, (3)
defining the success function to handle the return data
whenever it comes back, and: (4) error handling. For the full
code see “Chat with GPT model” [21]. The call to the API is
made here using jQuery:

$.ajax({
 type: "POST",
 url: "https://api.openai.com/v1/chat/completions",
 data: inputdata,
 dataType: "json",
 success: function (data, rc) { ... }
 });

A note is useful here on the concept of JavaScript calling an

API from the browser. The “same origin policy” is the core
idea of web app security that JavaScript should only make
server requests (“Ajax”) to the server it came from. To get
around this, an API endpoint will use Cross-Origin Resource
Sharing (CORS) [22, 23] to allow it to be called from any
JavaScript. This can be seen in the browser debug tools,
where, when you run the above World on Ancient Brain, you

can see the HTTP response headers include
Access-Control-Allow-Origin:

https://run.ancientbrain.com. This means the original
must allow all origins. A normal site would have
no Access-Control-Allow-Origin response header at all, and
could not be called from our JavaScript.

Is the coding learner expected to write from scratch
complex HTTP POST requests as above? Not really. We
expect them to run existing Worlds that make these API calls,
clone these Worlds, and partially modify them, probably
without ever going near the HTTP POST section.

In fact, Ancient Brain now has a built-in
function AB.callGPT to call the GPT API in a much
simpler way, replacing all the complexity in the box above,
plus the not-shown parts (1), (2) and (4). At any point in the
student's code, they can simply call GPT as follows. Define
the API key and prompt, and then:

AB.callGPT (apikey, prompt, function (reply)
{
 // do something with the reply
});

This is easy enough that an introductory coder could do it.

See “APIs and CORS” in the Ancient Brain docs [15]. Future
work would include building these kind of Ancient Brain
wrapper functions to call other APIs.

IV. AN OPEN-SOURCE AI API COLLECTION

 The second part of this work was the building of a diverse
open-source AI API collection for students to run and edit.
Three classes of undergraduate and taught postgraduate
Computer Science students were introduced to JavaScript AI
coding on Ancient Brain, and then set to work (in late 2023) to
write JavaScript “Worlds” to call AI APIs of their choice to
demonstrate their power. Table 1 shows the APIs that were
chosen by the students (total of 39 different APIs).

Table 1. APIs chosen by the students

API Number of Worlds

OpenAI GPT 73

OpenAI DALL-E 24

Rapid API (14 different APIs) 13

Cohere 4

OpenAI Whisper 4

Hugging Face (4 different APIs) 4

Stable Diffusion 3

D-ID 2

OpenAI TTS 2

Microsoft Azure Vision 2

Deepgram 2

Deep AI 2

Elevenlabs 2

OpenAI Assistants 1

274

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

Google Cloud Translation 1

Google Cloud Vision 1

Google TTS 1

Ollama 1

Replicate 1

Eden AI 1

Twinword 1

Wikicheck 1

Clipdrop 1

V. EXAMPLE WORLDS

Some of the most impressive Worlds created by students in
this experiment are as follows. To see and run these, go to “AI
API Worlds” in “Showcase Worlds” [24].

A. Non-Graphics Worlds

We start with Worlds that are basically webpages, rather
than 2D or 3D graphics environments.

Infinite story book [Fig. 2]. This World generates an
illustrated story book using prompting. It calls the GPT API
for text and the DALL-E API [25] for images. The user enters
a few prompts and GPT constructs an entire story. Then we
call DALL-E with that story to get images to represent it. You
can go back and forward, and the text and images are still
there. Author: Darragh McGonigle.

Fig. 2. “Infinite story book”. From the Showcase Worlds above. The student

gets GPT to make a story and DALL-E to make images.

Therapeutic AI [Fig. 3]. Therapeutic AI bot. The user
says how they are feeling. A GPT API call generates a text
response. This text is given to the D-ID API [26] (text to
video clips with photo-realistic characters speaking). The
photo-realistic character then speaks the advice that came
back from GPT. Author: Moses Crasto.

Translation. Chat to someone in a different language. This
World uses the Ancient Brain Websockets service to make an
AI-powered chat app. Two users in different languages can
talk to each other and the system translates. Users run the
World at the same time and select languages. When they type,
it calls Google Cloud Translation API [27]. Authors: Renso
Guilalas and Christopher Muthi.

DEB.ai.TE. An app for school and university debates. The
user enters a prompt, such as a controversial statement for a

debate. The app makes two calls to the GPT API to get
opinions, one for and one against. In the return page, the user
selecting some text makes a call to the WikiCheck
fact-checking API [28]. Also, every word is clickable, and a
click makes a call to the Free Dictionary API to get the word
definition. Authors: Calem McGlynn and Joseph McNaney.

Generate Images from Audio. Audio to text to image.
The user needs to turn the microphone on for the Ancient
Brain site. The user records some speech, and can play it back.
The user then sends the audio to the OpenAI Whisper
transcription API. This returns a transcript of the audio. The
transcript is sent to DALL-E to generate an image. Author:
Toma Emoghene-Ijatomi.

Fig. 3. “Therapeutic AI”. The student gets D-ID to make video clips with
photo-realistic characters speaking.

B. Graphics Worlds

The previous Worlds are regular web pages that call the
APIs and put HTML elements on the page. The power of the
Ancient Brain platform can be seen in the following projects
that combined AI API calls with 3D graphics Worlds. Each of
these projects created a compelling 3D graphics World and
then used AI API calls in the background to populate it, drive
gameplay, and so on. Again, see [24] to run these (Fig. 4).

Fig. 4. Some of the graphical Showcase Worlds at [24]. Go to that page and
click on any of them to run them.

275

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

AI Art Gallery [Fig. 5]. Dynamic 3D art gallery with AI
generated images. This is a Three.js World. The user can
rotate the camera. The user can generate art for each frame in
the gallery. This calls the Replicate image generation
API [29]. For example, ask for “Mona Lisa”, or invent your
own. It paints the new image on the wall. Author: Jamie
Gorman.

Fig. 5. “AI Art Gallery”. The student gets Replicate to generate pictures to

populate the frames.

AncientBook [Fig. 6]. This generates a custom story in an
interactive 3D book. Controls on the page help the user design
the story. Then OpenAI GPT generates the story. The story is
inserted into a 3D model of a book in a Three.js World. The
user can scroll to change pages. There is a “page turn” sound
effect. The user can drag the camera, rotate the book, and see
the cover and surroundings. Author: Jordan Tallon.

Fig. 6. “AncientBook”. The student gets GPT to make a story and inserts it

into a 3D model.

3D AI World. 3D game with GPT gameplay and audio.
This is a Three.js World. It has 3D models with moving parts.
The user can control the camera. The story is powered by
GPT API. The user types, and then audio of the text comes out.
The AI call then responds in a text format, and then responds
in audio. Author: Nithin Sai K. J.

Landmark Museum. Dynamic 3D museum of landmarks
in a chosen country. This is a Three.js World with mouse and
WASD camera control. The user enters a country. The code
calls the OpenAI GPT API to get a landmarks list for that
country. The code then displays this as text on walls inside the
World. It then calls Google Image Search API to get images
of the landmarks. It displays the images on the walls. Author:

Christopher Dobey.
Gatekeeper. 3D game with GPT gameplay and audio. This

is a Three.js World with 3D models. The user navigates using
the keyboard. If you get close to the wizard, you are detected,
and he speaks. It uses the GPT API to generate a set of riddles
to open the gate. The wizard’s speech text is converted to
audio with the Google TTS (text-to-speech) API. The user
types and user replies are also converted to audio. There is
background music and sound effects. There is a Three.js
camera that the user can rotate. Author: Sam Murphy.

VI. ISSUES IN AI API CODING

A. API Key Management

One issue that arose with this project and will arise in
general with using APIs for education, is API key
management. Most APIs require registration for an API key,
which is basically a password. There is often a free entry level
and then paid subscriptions. APIs normally ask users to keep
keys secret, not least because other users seeing your key
means they can use it, and use up your credits.

In an educational setting, should the teacher register a key,
and then copy it to the class? The class might soon exhaust the
teacher's credits. Or should students have to register
themselves, which imposes extra hurdles for them?

One obvious issue arises with JavaScript, which is that the
JavaScript is client-side, meaning if you put the API key in
your code, then anyone running your World can view source
and see the API key [30]. Solutions to this could be:

1) Keep the World “Hidden URL”, so that no one can
see the key except trusted people.

2) Require the user to enter an API key when they run
your World. This is what “Chat with GPT
model” [21] does.

B. API Response Delays

One downside of the AI being remote rather than local is
responsiveness. Delays of seconds in response time are seen
in some APIs with some subscriptions - notably APIs from
small organizations and free entry level. On the other hand,
APIs with large infrastructure behind them, and using a paid
subscription, often show remarkably fast response times.

From the student point of view, the issue with an API call is
that the answer will come back at some point in the future.
This is asynchronous JavaScript, and coding for it is a skill
that teachers and students must learn. For a complex series of
API calls returning at different times, see the source code and
console output of “Student Grading Assistant” [31].

C. CORS Return Data

For some of the above APIs, issues arise with the return
data. The data may be returned directly with the Ajax call, in
which case there is no problem.

A more difficult question (and this is the norm with some
APIs) is when the return data is the URL of a resource on a
normal (non-CORS) web server. How can the JavaScript
fetch that resource? Recall that the “same origin policy”
means resources we fetch should be on the same server as the
JavaScript (i.e. Ancient Brain). However, we do not have the
return data uploaded to Ancient Brain, since we did not know

276

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

about it in advance. It only appears at runtime.
For such return data, we can use a CORS proxy like

corsproxy.io [32] to fetch arbitrary resources off the Internet.
In this case a server-side program at the CORS proxy fetches
the resource, outside of the browser environment, which
means no “same orgin policy” is needed or enforced. The
CORS proxy then serves up the resource using a CORS
header and so any third-party JavaScript can fetch it.

The code looks like:

var url = ... // some resource on a normal website

var curl = "https://corsproxy.io/?"
 + encodeURIComponent (url); // CORS-enabled URL

$.get (curl, function (data)
{
 // we have got the data
});

We can use this remote CORS-enabled URL in other places

where normally one expects a local same-server resource,
such as loading textures into graphics Worlds. For example,
the DALL-E API outputs AI-generated images to a server
under blob.core.windows.net, which is then non-CORS. They
cannot be directly fetched into graphics Worlds, but using a
CORS proxy they can.

Ancient Brain now has a handy function AB.cors to
provide a CORS-enabled version of the URL. See “APIs and
CORS” in the Ancient Brain docs [15]. So, grabbing a
random image from the Internet to put in a P5 graphics World
looks like this:

 img = loadImage (url); // fails
 img = loadImage (AB.cors (url)); // works

This is easy enough that an introductory coder could do it.
It should be noted that there are lots of issues with CORS
proxies [33], including that the proxy might vanish next year.

VII. EMPIRICAL RESULTS AND RELATED WORK

173 students took part in the project, which was part of
their course and for which they received marks, so they were
motivated, and we were not dependent on self-selected
volunteers. We consider the results under a number of
performance headings as follows.

A. Learning Curve

Most students before the project had little JavaScript
experience, no experience coding for APIs or AI in JavaScript,
and no AI API experience in any language. That statement is
based on comments in the student documents, but we do not
have exact numbers. In the next run of the project, we will
gather exact numbers on what experience the students have
before we start.

B. RAM, Disk and Other Requirements

No memory usage or speed issues were reported with
client-side requirements for the site. Students were free to use
their own PCs, laptops and mobile devices. The demands on
their machines by the site are no worse than the demands of
normal web usage. Coding and running 3D graphics from the
site are possible on any modern smartphone, and on any
laptop or PC built after about 2015 or so.

There are no disk usage issues since storage is on the

server.

C. Student Output

In a five-week period, the students submitted 211 final
JavaScript Worlds for marking, of which we described only a
sample above. Each student typically had also coded half a
dozen practice Worlds, making probably over a thousand
Worlds generated in the experiment.

D. Related work: Coding Sites

Many JavaScript and non-JavaScript coding courses for
education exist. Ones using JavaScript tend to use some form
of online editor, though some are entirely offline. See [34] for
a JavaScript course for high school that uses an online editor
at tutorialspoint.com [35].

See [11] for a detailed comparison of Ancient Brain with
other coding sites. We will not repeat that here, but note the
conclusion that many features of Ancient Brain are minority
or even unique in the world of coding sites, namely:

 Search box for all user programs.
 Search box for all source code of all user programs.
 Ability to obfuscate source code.
 Teacher and student accounts where student code is

hidden but teacher can view, run, and edit it.
 Users can upload images, music, sound effects,

JavaScript libraries, JSON data and 3D models
 Users can browse each other's uploads.
 Programs can use other users’ uploads.
 Websockets server to allow coding of real-time

Websockets programs.
As discussed further in [11] this set of features makes

Ancient Brain novel and different to existing coding sites.

E. Related work: AI APIs on Coding Sites

Now we look specifically at AI API programs on other
coding sites. A lengthy search of coding sites struggles to find
any comparable collection of AI API JavaScript programs for
students in existence anywhere. The following is a survey of
what does exist.

See [36] for a 2024 survey of AI courses in schools (K-12),
including some visual programming systems (i.e., like Snap!
or Scratch) that use AI APIs. A 2021 survey of Machine
Learning in K-12 is in [37], which mostly lists visual
programming systems and no AI API system. We have not
been able to find an experiment with AI APIs in
regular text programming (like JavaScript) for schools, but
some surely exists.

JavaScript to call AI APIs is new enough, even outside
schools. A search of Codepen [38] for JavaScript “pens” that
call the GPT API finds various experiments, but one struggles
to find any working one where it is clear what it does and one
can enter an API key to talk to the GPT API. Some of them
struggle with obsolete endpoints - likely to be an ongoing
problem with API programs into the future. Others suffer
from not explaining what they do - which can be a problem on
all user-submitted sites, including Ancient Brain. The only
working Codepen example found on a lengthy search was
"AnalyseThis" [39].

After a search, we discover that the P5 editor [40] hosts
some user-generated JavaScript “sketches” that call the GPT

277

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

API, but a lengthy search struggled to find a single working
one. Some struggled with obsolete endpoints and obsolete
models. P5 sketches and features for education are surveyed
and discussed in some recent papers: [41] and [42], but
neither of these mention AI.

JSFiddle [43] has some GPT API experiments, but we
were unable to find a working one. CodeSandbox [44] has
some GPT API projects but a lengthy search struggled to find
one that was both public and runs.

A search of Ancient Brain for “GPT” finds pages of
working GPT Worlds, though admittedly helped by curation
of results after the 2023 project.

VIII. CONCLUSION

We believe the resulting open source code archive is
impressive and relatively unique, but whether this is the best
way of helping a class code AI API programs is hard to say,
since there is so little similar work.

From the educational viewpoint, AI APIs provide the user a
far more flexible form of access to remote large-scale
machine intelligence than human-oriented web page access.
Of course, the user must be a coder. Being able to bring this
intelligence inside your own program is a new frontier of
educational coding, and one that should have massive appeal
to students.

These amazing Worlds were written by Computer Science
students. Do we expect introductory-level students, such as at
school (K-12) level, to be able to write such Worlds from
scratch? Of course not. The value of this experiment is:

1) It demonstrates what can be done with Comp. Sci.
students on the platform.

2) It demonstrates what can be done at all on the
platform. For some of these Worlds, it was unclear
whether they could even exist until they were
written.

3) It is the basis for exercises for introductory-level
students, where they could be tasked to clone and
modify these programs in certain ways.

4) It is the basis for much simpler versions of these
Worlds for introductory-level students to edit. In fact,
we have such Worlds. See the simple “Hello World”
versions, under “AI API Worlds” in [24].

For reasons given above, we have only tested students
coding for AI APIs in JavaScript, in a browser-based
environment. However, many of the issues, such as API key
privacy and asynchronous return, will be applicable to other
coding environments. The CORS issue will be applicable to
other browser environments.

Ancient Brain does not yet have built-in support for
languages that transpile to JavaScript, such as TypeScript and
others. Nor does it yet have built-in support for AI generation
of code from natural language, though the AI API programs
here show how that might be done. In general, the user
interface is written in English and there is not yet language
support for other languages.

The diversity of APIs called, and Worlds made by the
students in one experiment is extraordinary. All the above
Worlds are open source and can be “cloned” and edited in the
browser on Ancient Brain. Simpler versions could be made of

them for classes with other students. Students could be set
exercises to modify them in different ways. Future work is to
design a course to do that.

To summarise, a limitation of this work is that we have not
tested AI API coding on the site with introductory-level
coders. This will be the focus of future work.

We are actively seeking a partner to work on an “AI for
schools” book using JavaScript on Ancient Brain. Apart from
the AI API Worlds shown above, the site also has a course in
AI concepts at [45] (Fig. 7). This is an introduction to AI
concepts, with examples including A-star search, genetic
algorithms, neural networks, backprop and image recognition.
These are all coded as JavaScript Worlds on Ancient Brain
that can be run, cloned, and edited. We have also made
student exercises. This AI code runs locally, not remotely like
the APIs. We are seeking a partner to translate this, and the AI
API work, into a book and course for schools and colleges
internationally.

Fig. 7. Some of the Worlds used in the AI course on Ancient Brain [45].
Shown here are JavaScript Worlds for breadth-first search, perceptron,
A-star search, and multi-layer neural network for character recognition. Each
comes with student exercises. We are seeking partners to help turn this into a
book.

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] T. B. Brown et al., “Language models are few-shot learners,” in Proc.
the 34th International Conference on Neural Information Processing
Systems, December 2020, pp. 1877–1901.

[2] M. Schreiner (2023). GPT-4 architecture, datasets, costs and more
leaked. The Decoder. [Online]. Available:
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-le
aked/

278

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

[3] G. Menghani, “Efficient deep learning: A survey on making deep

learning models smaller, faster, and better,” ACM Computing Surveys,

vol. 55, issue 12, pp. 1–37, 2023.

[4] OpenAI. ChatGPT (webpage access to GPT model). [Online].

Available: https://chat.openai.com/

[5] AI models list. Hugging Face. [Online]. Available:
https://huggingface.co/models

[6] Rapid API Hub. [Online]. Available: https://rapidapi.com/hub
[7] A. Barrett and A. Pack, “Not quite eye to A.I.: Student and teacher

perspectives on the use of generative artificial intelligence in the
writing process,” Int. J. Educ. Technol. High. Educ., vol. 20, p. 59,
2023.

[9] K. Fuchs and V. Aguilos, “Integrating artificial intelligence in higher
education: Empirical insights from students about using ChatGPT,”
International Journal of Information and Education Technology, vol.
13, no. 9, pp. 1365–1371, 2023.

[10] S. Banjade, H. Patel, and S. Pokhrel, “Empowering education by
developing and evaluating generative AI-powered tutoring system for
enhanced student learning,” Journal of Artificial Intelligence and
Capsule Networks 6, no. 3, 2024, pp. 278–298.

[11] M. Humphrys, “Ancient brain: A JavaScript coding platform for
education with 3D graphics, Websockets, AI and support for teachers,”
presented at 8th International Conference on Digital Technology in
Education (ICDTE 2024), Berlin, Germany, Aug. 7–9, 2024.

[12] M. Vervier et al. (2017,), Browser Security WhitePaper, X41 D-SEC
GmbH, Aachen, Germany. [Online]. Available:
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Pa
per.pdf

[13] A. Younang and L. Lu, “Static checking of range assertions in
JavaScript programs,” International Journal of Computer Theory and
Engineering vol. 9, no. 5, pp. 346–350, 2017.

[14] ML5 AI library (multiple authors). ML5 project. [Online]. Available:
https://github.com/ml5js/ml5-library

[15] Ancient Brain docs. Ancient Brain. [Online]. Available:
https://ancientbrain.com/docs.php

[16] A. Zakai et al. ammo.js physics library. [Online]. Available:
https://github.com/kripken/ammo.js

[17] P5 Starter Tutorial. Ancient Brain. [Online]. Available:
https://ancientbrain.com/p5.start.php

[18] Three.js Starter Tutorial. Ancient Brain. [Online]. Available:
https://ancientbrain.com/three.start.php

[19] Editor’s Choice Worlds. Ancient Brain. [Online]. Available:
https://ancientbrain.com/worlds.choice.php

[20] OpenAI developer platform. [Online]. Available: platform.openai.com
[21] Chat with GPT model. Ancient Brain. [Online]. Available:

https://ancientbrain.com/world.php?world=2850716357
[22] Cross-Origin Resource Sharing (CORS). MDN Web Docs. [Online].

Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

[23] G. Meiser, P. Laperdrix, and B. Stock, “Careful who you trust:
Studying the pitfalls of cross-origin communication,” in Proc. the
2021 ACM Asia Conference on Computer and Communications
Security, pp. 110–122.

[24] Showcase Worlds. Ancient Brain. [Online]. Available:
https://ancientbrain.com/showcase.php

[25] DALL-E API at OpenAI. [Online]. Available:
https://platform.openai.com/docs/guides/images

[26] D-ID API. [Online]. Available: d-id.com
[27] Google Cloud Translation API. [Online]. Available:

https://cloud.google.com/translate/docs/basic/translating-text
[28] WikiCheck fact-checking API. [Online]. Available:

https://github.com/trokhymovych/WikiCheck
[29] Replicate API. [Online]. Available: replicate.com
[30] H. K. Lu, “Keeping your API keys in a safe,” in Proc. 2014 IEEE 7th

International Conference on Cloud Computing, pp. 962–965.

[32] The corsproxy.io CORS proxy service. [Online]. Available:
corsproxy.io

[33] T. Perry. What are CORS proxies, and when are they safe? HTTP
Toolkit. [Online]. Available: https://httptoolkit.com/blog/cors-proxies/

[34] C.-Y. Huang and M. Bachrach, “A JavaScript curriculum for high
school students to explore computer science,” International Journal of
Information and Education Technology, vol. 8, no. 12, pp. 848–854,
2018.

[35] Online Javascript Editor at tutorialspoint.com. [Online]. Available:
https://www.tutorialspoint.com/online_javascript_editor.php

[36] S. Grover, “Teaching AI to K-12 learners: Lessons, issues, and
guidance,” presented at the 55th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2024), March 20–23,
2024, Portland, USA.

[37] I. T. Sanusi et al., “Survey of resources for introducing machine
learning in K-12 context,” IEEE Frontiers in Education Conference
(FIE 2021), Lincoln, NE, USA.

[38] Codepen. [Online]. Available: codepen.io
[39] “AnalyseThis” on Codepen. [Online]. Available:

https://codepen.io/bryanhurley2/ pen/xxmgNoV
[40] P5 editor. [Online]. Available: editor.p5js.org
[41] T. Terroso and M. Pinto, “Programming for non-programmers: An

approach using creative coding in higher education,” presented at
Third International Computer Programming Education Conference
(ICPEC 2022), Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[42] A. M. McNutt, A. Outkine, and R. Chugh, “A study of editor features
in a creative coding classroom,” in Proc. the 2023 CHI Conference on
Human Factors in Computing Systems, pp. 1–15.

[43] JSFiddle. [Online]. Available: https://jsfiddle.net/
[44] CodeSandbox. [Online]. Available: https://codesandbox.io/
[45] AI programming exercises. Ancient Brain. [Online]. Available:

https://ancientbrain.com/course.ai.php

Copyright © 2025 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

279

International Journal of Information and Education Technology, Vol. 15, No. 2, 2025

[8] C. B. Fontao et al., “ChatGPT’s role in the education system: Insights

from the future secondary teachers,” International Journal of

Information and Education Technology, vol. 14, no. 8, pp. 1035–1043,

2024. [31] D. Stirbys. Student grading assistant. Ancient Brain. [Online].

Available: https://ancientbrain.com/world.php?world=5696831766

	IJIET-V15N2-2240-IJIET-15190

