
Ancient Brain: A JavaScript coding platform for education with
3D graphics, Websockets, AI and support for teachers

Mark Humphrys
School of Computing, Dublin City University

Ireland
mark@ancientbrain.com

Abstract
This paper introduces a JavaScript coding site called ”Ancient Brain”
(at https://ancientbrain.com/) , which is designed for education with
support for students and teachers. It has an extensive list of features
to support coding almost anything that can be coded in JavaScript,
including HTML-based pages, 2D graphics worlds, 3D graphics
worlds, Internet-enabled Websockets apps, and AI apps. All are
coded and run on the site in the browser with no install. Support for
teaching includes ”teacher” and ”student” accounts where student
code is hidden from other students but not from the teacher, who
can run and even edit the code written by all their students. This
site has been tested with several years of undergraduate and taught
postgraduate students, though not written up in a paper until now.
At time of writing there are 9,323 JavaScript creations on the site.
We survey some of the extraordinary range of programs on the
site, written by, at last count, 2,150 coders. The next step is to take
the site into secondary schools. We will discuss how this could be
done, with examples.

CCS Concepts
• Computer science education, Software engineering educa-
tion, K-12 education;

Keywords
Coding sites, Education, JavaScript, WebGL, Websockets, AI in
education
ACM Reference Format:
Mark Humphrys. 2024. Ancient Brain: A JavaScript coding platform for
education with 3D graphics, Websockets, AI and support for teachers. In
2024 8th International Conference on Digital Technology in Education (ICDTE)
(ICDTE 2024), August 07–09, 2024, Berlin, Germany. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3696230.3696234

1 Introduction
The space of text-based programming (as opposed to visual pro-
gramming) in the classroom is an interesting space. It seems clear
that older secondary school students are ready to move beyond
visual programming environments like Scratch and Snap! and try

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICDTE 2024, August 07–09, 2024, Berlin, Germany
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1757-4/24/08
https://doi.org/10.1145/3696230.3696234

coding in regular text-based programming languages like Python
and JavaScript. But how should they code? On what platforms?
What can their code do? And how can teachers safely run untrusted
student code to mark it?

A wide range of tools and technologies are in use in coding
education at school (K-12) and university level. See [1] for a 2019
survey of programming technologies in K-12 worldwide. In their
survey, visual programming dominates. The text programming
languages they found in use (restricting to high school level) were
Java, Python, Pascal and Smalltalk. JavaScript does not appear at all,
except in one course which allowed students using the Snap! visual
programming language to look at the JavaScript that it translates
to underneath. Despite the survey, there are in fact a number of
projects to teach JavaScript to students and we will look at them
below.

We will first explain the logic that led us to choose JavaScript
as a language for a shared coding environment for education. The
proof of this choice will come when we explain some of the things
students have created on this platform.

2 Principles for a shared coding environment
This work evolved out of an earlier project called the ”World Wide
Mind” [2] [3] [4] [5]. The initial focus of the World Wide Mind
project was not on education but on AI research. The idea was to
make a platform that allowed the building of ”hybrid AI” systems
from the work of multiple authors. Similar to ”ensemble AI” or
”mixture of experts” models, with the focus on bringing together the
work of widely dispersed authors. The name ”World Wide Mind”
indicates that parts of the AI could exist at different servers around
the world.

As the project developed, and as we built a platform for multiple
authors to share and run code, it was soon realised that the platform
could be used for teaching.

The following principles for a shared coding environment
emerged from the World Wide Mind project:

1. Users (e.g. researchers in AI, or students in an educational
setting) should be able to view collections of programs writ-
ten by other users (e.g. researchers, teachers, 3rd parties,
and possibly other students). Normal programs are public.

2. Users can run these programs without any install needed.
3. Users can run them securely, even though they are untrusted

code (e.g. untrusted student code).
4. Users can edit their own programs without any install

needed. They are saved for later use, and use by others.
5. For normal programs, other users can view the source code

of the program.

28

https://orcid.org/0009-0004-9183-172X
https://ancientbrain.com/
https://doi.org/10.1145/3696230.3696234
https://doi.org/10.1145/3696230.3696234
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696230.3696234&domain=pdf&date_stamp=2024-12-06


ICDTE 2024, August 07–09, 2024, Berlin, Germany Mark Humphrys

6. For normal programs, other users can clone the program to
get their own copy to edit.

7. The programs can do advanced graphics.
8. The system should scale to large numbers of users.

3 JavaScript solution
After some false starts experimenting with other technologies (no-
tably Java), we eventually chose a JavaScript language based solu-
tion to implement these principles. The programs are stored on a
server and run on the client side (in the browser). We address the
principles as follows:

1. The programs will be stored on a server, where users may
browse lists of what programs exist. Programs on the site are
by default public. We have an option to set them to hidden
(not discoverable).

2. Users can run the JavaScript without needing any software
other than a browser.

3. Users can run the JavaScript securely, because the JavaScript
security model is mature and stable [6]. (It is of course
fundamental to the Web.)

4. Users can edit inside the browser using an editor JavaScript
library, with no install of any software needed. The code is
saved to their account for later use and (normally) use by
others.

5. Users can ”view source” to view any JavaScript delivered to
the client side. This is part of theWeb model. We will allow a
program to opt out of this by being hidden (not discoverable).
We will allow a program to partially opt out of this by having
its JavaScript obfuscated.

6. Users can clone the programs if they register an account.
They cannot edit other users’ creations, but need to make
their own copy to edit.

7. Since the emergence of WebGL, and JavaScript graphics
libraries based on it such asThree.js [7] and P5 [8], JavaScript
can do advanced 3D and 2D graphics, all on the client side.

8. Code runs on the client side, not the server side, so the
system scales well to large numbers of users and runs.

4 Ancient Brain
Our JavaScript coding site is called ”Ancient Brain”, and is live
at https://ancientbrain.com/. See Figure 1. The reader is strongly
urged to simply go there now and start running programs (which
are called ”Worlds”). You run Worlds by clicking on them in the
browser, with no install needed. Worlds can be games, AI appli-
cations, general apps, coding challenges, maths demos, physics
demos, quizzes, chat applications, virtual worlds, museum tours,
and more.

Ancient Brain is in use in multiple teaching courses at Dublin
City University, at both undergraduate and taught postgraduate
level. At time of writing, it hosts 9,323 JavaScript Worlds written
by 2,150 coders. Experiments have been run on bringing it into
schools, and writing a course or textbook for schools is at the top
of future work. We are seeking partners to work on this.

Figure 1 shows part of the home page of ancientbrain.com as at
Feb 2024. This showcases a random four programs (called ”Worlds”).
Each can be run by clicking on it, with no install. The ones here

are: (1) One Cube World, an extremely simple World to draw a
cube, suitable for use on day one of learning to code, (2) Landmark
Museum, a World that calls OpenAI’s GPT API and also Google
Image Search API, and displays returned text and images on the
walls of a 3D graphics scene, (3) Recognise any image, an AI World
to recognise images using ML5 and MobileNet, and: (4) Game of
Crowns, an advanced World with 3D graphics and 3D models. To
find and run all these Worlds, go to the site and use the search box.
At time of writing, there are 9,323 Worlds on the site.

5 Ancient Brain features
Ancient Brain now has many features, including:

1. Edit code in the browser, with no install, using the Ace
JavaScript editor [9]. Editor syntax highlighting and syntax
error checking. There is intelligent code help. You can select
code and the editor will find a manual page / help page for
that code.

2. On editor ”Save”, the code is live and can be run. No ”build”
or ”publish” or other intermediate step. Runs can be started
with a button in the editor. Or, since a run is a webpage, you
can leave the run webpage up and just hit ”Reload” to load
in the new code.

3. An option to obfuscate your JavaScript. If chosen, you can
see the plain text of your JavaScript, but other users (when
they ”view source”) only see an obfuscated version. The site
provides a further option tomake the code hiddenURLwhere
other users cannot find it or run it. In an educational setting,
we encourage students to choose ”hidden URL” during the
project, so no other student can see their work. After the
project is over, the work can be made public.

4. Support for 2D and 3D graphics. Built-in graphics libraries
and many sample Worlds with open source code. Support
for Three.js, P5, Phaser and native WebGL coding. Other
graphics libraries can be uploaded by users. For an overview
of what graphics are possible, see ”Editor’s Choice Worlds”
in the main menu of the site. We also allow the making of
text-only Worlds, that are regular web pages with HTML
elements.

5. Users can upload images, textures, music, sound effects,
JavaScript libraries, JSON data files and 3D models to use in
their Worlds. So students can customise their Worlds with
their own images and music. Uploads are public. You can
reference and use other users’ uploads in your code.

6. Mouse re-definition support. Support for re-defining what
mouse drag and click and scroll do. For example, mouse drag
to move objects or drag the camera in a 3D world. Sample
Worlds are provided. See ”Mouse” in the Ancient Brain docs
[10].

7. Worlds run on mobile. We imagine most editing will be done
on desktop, but the site works on mobile, and Worlds can
run on mobile and work through touch. From the educa-
tional viewpoint, this means students can develop Worlds on
desktop machines in class and then show them off to parents
and friends later on their mobile.

8. Touch re-definition support. Support for re-defining what
touch drag and tap and pinch do. For example, touch drag

29

https://ancientbrain.com/


Ancient Brain: A JavaScript coding platform for education with 3D graphics, Websockets, AI and support for teachers ICDTE 2024, August 07–09, 2024, Berlin, Germany

Figure 1: Part of the home page of ancientbrain.com as at Feb 2024.

to move objects or drag the camera in a 3D world. Sample
Worlds are provided. See ”Touch” in the Ancient Brain docs
[10].

9. Support for 3D models. Built-in libraries for embedding 3D
models (e.g. houses, people) in Worlds. Sample Worlds are
provided. See ”3D models” in the Ancient Brain docs [10].

10. Support for physics in 3D Worlds. Built-in physics libraries
with gravity, momentum, etc. For example, ammo.js [11].

30



ICDTE 2024, August 07–09, 2024, Berlin, Germany Mark Humphrys

Figure 2: The two versions of ”One Cube World”, plus two variants that were quickly made by students once they saw how the
site worked.

11. Support for AI. Support for the ML5 AI library [12]. You can
upload other AI JS libraries and use them.

12. Websockets support for all Worlds. This allows real-time
communication between users running your World. Users
can write multi-user Web games and have real-time chat
between users of theWorld. See ”Websockets” in the Ancient
Brain docs [10].

13. Almost any JS can be injected into the run window. JS can
include other JS at run-time (either local JS or remote JS). JS
that makes server calls may not be portable, but almost any
other JS should be portable to the site. There are projects on
the site to port all three.js examples [13] and all P5 editor
built-in sketches [14].

14. Search engine for Worlds, users and uploads. Code search
to search the JS code of all public programs.

15. Can embed Worlds in external third-party sites. Like
YouTube embeds.

5.1 Ancient Brain for teachers
Ancient Brain has some built-in support for teachers. See ”Teach-
ing” and ”Register a class” in the main menu. When you register a
class, you get a special ”Teacher” account and a number (you decide)
of ”Student” accounts which you will hand out to your students.
These have certain properties:

31



Ancient Brain: A JavaScript coding platform for education with 3D graphics, Websockets, AI and support for teachers ICDTE 2024, August 07–09, 2024, Berlin, Germany

Figure 3: The code for the P5 version of ”One Cube World”, shown here in the Ancient Brain editor.

• In a ”Student” account, all code is obfuscated and at hidden
URLs. Other students cannot see it, find it or run it. It is
excluded from search and the URL is not guessable.

• In a ”Teacher” account, you can find and see and run all
code written by your students. You can view the plain text
source code. And you can edit the code. It is like having
”root access” to their accounts.

Running and marking student programs have some powerful
features. First note that students do not email you their programs
or put them into a file space that you have to manage. Students
upload them to the server and you as the teacher do not have to
manage any of that. Second, you can safely run untrusted student
code. A recurring issue with teaching coding is how can the teacher
run the code safely [15]. What if the code tries to access files or
cause damage? The JavaScript model means that, even though the
teacher is running untrusted code, it cannot damage their machine
or browser or account.

5.2 Teachers edit student code
In addition to safely running the submitted student code, as the
teacher you can edit and re-run any student code. You can make
small (or large) changes to student code to see what happens. Test
if it is robust with different parameters. You can even fix bugs and
run it again.

This is one of those features you don’t know you are missing
until you have it. The author of this paper marked student projects
for many years but never edited or bug-fixed them, until this sys-
tem made it easy. The most useful edit is probably just to insert
console.log statements at various points to see what is going on.
Other useful small edits have included fixing resources and depen-
dencies that existed when students submitted but later vanished.
When marking code, it is rare enough for teachers to edit a student
program and run it again. The reason being that it is usually not
safe or not practical. Here it is both safe and practical, and even
pleasurable.

6 Starter tutorial: One Cube World
We will now look at some of the 9,323 Worlds that exist on the site,
to illustrate what can be written.

The site has two ”starter tutorials” for the beginner user, one
using P5 [16] and one using Three.js [17]. This is where to get
started coding on the site. Each tutorial has a World to draw a cube
in 3 dimensions. The P5 version of ”One Cube World” has 13 lines
of code. The Three.js version of ”One Cube World” has 11 lines
of code. (But arguably Three.js is more complex for the beginner
coder.) Note in Figure 2 how the students quickly learned to make
multiple objects, of multiple shapes, and put textures on the objects.
To find these Worlds, use the search box on the site.

32



ICDTE 2024, August 07–09, 2024, Berlin, Germany Mark Humphrys

Figure 4: Some of the Starter Worlds.

The code for the P5 version of ”One Cube World” is shown in
Figure 3. A ”dark mode” can also be selected. The P5 Starter Tutorial
introduces novice coders to ”One Cube World” and gets them to
clone and edit the code. We start them with editing simple things
like object size and colour. By the end of the tutorial we show them
how to upload their own image to the site, paint it on the cube, and
make multiple cubes. Of course, for more advanced coders, Worlds
can get a lot bigger than this. At time of writing, the largest World
created on the site has 7081 lines.

In contrast to some coding sites, our code editor has only a JS
pane, and no HTML or CSS pane. Default HTML and CSS is taken
care of. Any custom HTML and CSS can be done from within
JS, and we provide tools and examples for that. This is a pure JS
environment.

The tutorials give the new coder a series of exercises to clone and
edit the code of ”One Cube World”. These tutorials have been used
many times with success with students who have never coded in
any language before. They have been tested with secondary school
students and even primary school students, who learnt some real
JavaScript in an hour with them.

7 Some collections of worlds
7.1 Starter Worlds
The site provides a large number of readable, open source, ”Starter
Worlds” to show how to code different types of World. See ”Starter
Worlds” in the main menu. Some examples are in Figure 4. Shown
here are Starter Worlds for: (1) an ultra-simple Three.js graphics

33



Ancient Brain: A JavaScript coding platform for education with 3D graphics, Websockets, AI and support for teachers ICDTE 2024, August 07–09, 2024, Berlin, Germany

Figure 5: Some Worlds using 3D models on the site.

World, (2) how to make a P5 graphics World, (3) a slightly more
complex Three.js graphics World, and: (4) how to make a web page
of HTML elements. To find these Worlds, go to ”Starter Worlds” in
the main menu.

Most of the Starter Worlds are designed so that the easiest parts
of the code to change are in a section called the ”tweaker’s box”
at the top. Essentially, changes that can be made without being a
skilled programmer are in the ”tweaker’s box” (such as changing
the values of some basic parameters) whereas the more difficult to
approach code is lower down. So we encourage new users to clone
the Starter Worlds and change things in the ”tweaker’s box” and
see what happens.

7.2 Inserting 3D models
Pre-built 3D models (with pre-built covering materials) may be
uploaded to Ancient Brain and inserted into 3D graphics Worlds.
There are many sources of free and paid 3D models and materials,
such as free3d.com and sketchfab.com. We provide a number of
”StarterWorlds” with 3Dmodels to show how to insert these kind of
models into JavaScript Worlds on the site. The simplest is probably
”Castle World” on that page, which uses a pre-built 3D model of a
castle found at [18].

Mostly the 3Dmodels on Ancient Brain are included intoThree.js
based Worlds. The JavaScript to include various types of 3D models
into Three.js scenes is found in the ”loaders” files in the three.js
repository [19]. It is our experience that the help on how to insert
models in JavaScript Worlds is scattered and thin, so the more open
source examples we can get on the site the better. The Three.js

34



ICDTE 2024, August 07–09, 2024, Berlin, Germany Mark Humphrys

Figure 6: Some of the Worlds used in the AI course on Ancient Brain.

site has many impressive examples [20] but they tend not to be
explained to the learner.

Users of Ancient Brain have uploaded many further examples.
See Figure 5. All of the Worlds in this figure were created by
students. ”Game of Crowns” is based on the Starter World ”Castle
World”, with the addition of a new model of a queen. Plus the
student made it snow. ”escape” is an extraordinary World with a
3D model of an entire city that you move inside of. ”Chess” is a full
3D game of chess with rotating camera. To find these Worlds, use
the search box on the site.

7.3 Showcases of student code
Student Worlds (and all Worlds) on the site may be public for the
world to see and run (and also clone and edit). This is optional.
Worlds may be set to hidden to opt out of this. At Dublin City

University, we have public ”Showcase Worlds” pages of the best
student Worlds [21], with student consent of course. Students can
opt out, but they generally love this feature.

As teachers well know, student projects tend to run once, be
marked, and never be run again. Even if stored somewhere, they
tend to have dependencies (like libraries and resources) that mean
they will not work in the future. A video might be taken, but the
running project is not seen again. Ancient Brain is committed
to keeping old Worlds and dependencies intact so they will run
indefinitely. This should be possible if dependencies are uploaded
to Ancient Brain. If remote dependencies are used, this plan will
not work.

At time of writing, the Showcase includes many advanced games
and 3D environments written by students. It also includes many
AI Worlds, including the following:

35



Ancient Brain: A JavaScript coding platform for education with 3D graphics, Websockets, AI and support for teachers ICDTE 2024, August 07–09, 2024, Berlin, Germany

Figure 7: Some of the Worlds already coded for each chapter of a textbook.

• A series of Worlds to do character recognition from images
with neural networks, written by taught postgraduates.

• A series of Worlds to implement the A-star pathfinding al-
gorithm in a 3D graphics environment.

• A series of Worlds that call remote AI APIs. These call a
range of amazing AI APIs, including chatbots like GPT, image
recognisers, image generators, text translation programs,
and more. These AI API Worlds are detailed in a separate
paper [22].

8 Teaching courses
8.1 AI course
Ancient Brain has been tested for several cycles now in the delivery
of both online and in-person classes for undergraduates and taught
postgraduates. In particular, a series of AIWorlds have been written
to base AI courses around. These are visible at [23]. Shown in Figure
6 are JavaScript Worlds for breadth-first search, genetic algorithms ,

neural networks for character recognition, and A-star search. Each
comes with student exercises.

These Worlds give an introduction to AI concepts, including
A-star search, genetic algorithms, neural networks, backprop and
image recognition. These are all JavaScript Worlds on Ancient
Brain that can be run, cloned and edited. We have made student
exercises for each. Many of the exercises follow the format: ”clone”
the World, make some edit (like change learning rate, population
size, number of hidden nodes), run it again, and then try to explain
what it does. Students are given working AI algorithms and can
immediately make changes to explore around the edges of them
and test their limits. All in the browser with no install and no risk.

8.2 Intro to Coding course
AI courses are for advanced coders. We believe a real future of this
site is in ”Introduction to Programming” courses for new coders,

36



ICDTE 2024, August 07–09, 2024, Berlin, Germany Mark Humphrys

probably in secondary school. We have such a course in experi-
mental form. This is a course in how to code, using JavaScript and
P5, based on the video series ”Code! Programming with p5.js” by
Daniel Shiffman [24]. The Shiffman code has been ported (with
permission under MIT licence) to Ancient Brain ”Worlds” that can
be run, cloned and edited on Ancient Brain in the browser. See
”Coding course” in the main menu. It is suitable for people who
have never programmed before.

We have brought Ancient Brain into some secondary schools
for experimental runs. We were able to teach some real JavaScript
code to complete non-coders within one session. We even managed
to teach some primary school children. The children’s ability to
customise and save and ”own” their Worlds was motivating for
many of them. What is clearly needed next is to make a course for
secondary school students.

9 Related work
As noted above, JavaScript barely appeared in a 2019 survey of
coding languages used in high schools [1]. However, there are
many projects to teach JavaScript to young people. See [25] for a
2019 survey of JavaScript teaching environments. It compares a
number of ”code playgrounds” for teaching purposes. It proposes
an environment called LearnJS, though this seems to be a local
install and not a public server.

There are a number of JavaScript ”sandboxes” and online tutorials
such as at W3Schools [26]. These lack many of the features of
Ancient Brain, notably in terms of user ability to own creations
and uploaded files and share them with others publicly. See [27]
for a JavaScript course for high school that uses an online editor at
tutorialspoint.com [28].

Daniel Shiffman’s site, The Coding Train [29], has extensive ex-
ercises and examples and puzzles for young people in JavaScript.
He mostly directs them to P5 Editor [30] for their coding. P5 Editor
works well, but Ancient Brain has many features that P5 Editor
lacks, notably: World images, Websockets server, hide and obfus-
cate code, support for ”teacher” and ”student” accounts, search JS
code of all Worlds, and support for Three.js and other libraries.

There are a number of JavaScript for kids books [31], [32], [33].
These struggle with what hosting site, if any, to use. Some use a
localhost web server. Some just use local files and double-click on
them. [32] has a simple online editor. If localhost or local files are
used, how does a teacher see, run and mark student code? Ancient
Brain solves this problem.

Replit Teams for Education [34] is closer to our work, though
you cannot run user creations without logging in and forking them.
CodePen [35] is also similar, though its default is a four-pane page:
HTML, CSS, JS and Run panes. See [36] for use of CodePen in
schools education.

10 Future work: Coding book for schools
We are actively seeking a partner to work on an introduction to cod-
ing book for secondary schools, using JavaScript on Ancient Brain.
The Shiffman exercises above do not make use of Ancient Brain’s
unique functionality, so we are developing our own exercises. See
the ”Book chapters” account on the site [37].

Figure 7 shows draft Worlds built for these book chapters. This
illustrates the kind of ambitious program we believe can be built in
stages by new coders on Ancient Brain. A series of eight chapters
leads to building a ”Battleship” style Websocket game that can be
played by two users over the Internet. It has 3D graphics with cus-
tomisable textures, and mouse control to rotate and zoom camera.
Each chapter builds on the previous, in introducing new concepts
in coding. View the code (online) to see exercises for each chapter.
We are seeking partners to help turn this into a book.

Ancient Brain has been tested in several cycles of teaching, but
not written up in a paper until now. We believe that its features
can now enable a new type of coding course for young people,
introducing them to real text-based code, and yet allowing access to
the advanced features they are used to in their regular computing
life: 3D graphics, professional 3D models, music and sound effects,
real-time networking and chat, and even AI. The aim of the site,
fairly ambitiously, is both to make coding exciting for students, and
to make running and marking a pleasure for teachers.

References
[1] Claudia Szabo et al. 2019. ”Fifteen Years of Introductory Programming in Schools:

A Global Overview of K-12 Initiatives”, Koli Calling ’19: Proceedings of the
19th Koli Calling International Conference on Computing Education Research,
November 2019, Article No.8.

[2] Mark Humphrys. 2001. The World-Wide-Mind: Draft Proposal, Dublin City
University, School of Computing, Technical Report no. CA-0301, Feb 2001.

[3] Ciarán O’Leary, Mark Humphrys and Ray Walshe. 2004. Constructing an animat
mind using 505 sub-minds from 234 different authors, Proc. 8th Int. Conf. on
Simulation of Adaptive Behavior (SAB-04), July 2004, Los Angeles, CA.

[4] John Pendlebury, Mark Humphrys and Ray Walshe. 2012. An Experimental
System for Real-time Interaction Between Humans and Hybrid AI Agents, 6th
IEEE International Conference on Intelligent Systems (IS’12), Sofia, Bulgaria,
September 6-8, 2012.

[5] Oisín Mac Fhearaí. 2014. Massively multi-author hybrid artificial intelligence,
PhD thesis, Dublin City University.

[6] Markus Vervier et al. 2017. Browser Security WhitePaper, X41 D-SEC GmbH,
Aachen, Germany, 19 September 2017.

[7] Three.js JavaScript graphics library https://threejs.org [Retrieved 24 Feb 2024.]
[8] P5 JavaScript graphics library, https://p5js.org [Retrieved 24 Feb 2024.]
[9] Ace editor. https://ace.c9.io [Retrieved 24 Feb 2024.]

[10] Ancient Brain docs. https://ancientbrain.com/docs.php [Retrieved 24 Feb 2024.]
[11] ammo.js physics library. https://github.com/kripken/ammo.js [Retrieved 24 Feb

2024.]
[12] ML5 AI library. https://github.com/ml5js/ml5-library [Retrieved 24 Feb 2024.]
[13] threejs.org porting project. https://ancientbrain.com/user.php?userid=threejs

[Retrieved 29 Feb 2024.]
[14] P5 Editor porting project. https://ancientbrain.com/user.php?userid=p5editor

[Retrieved 29 Feb 2024.]
[15] Ryan W. Sims. 2012. ”Secure Execution of Student Code”, Technical report of

Department of Computer Science, University of Maryland (15 May 2012).
[16] Starter Tutorial (P5). https://ancientbrain.com/p5.start.php [Retrieved 1 Mar

2024.]
[17] Starter Tutorial (Three.js). https://ancientbrain.com/three.start.php [Retrieved 1

Mar 2024.]
[18] ”WebGL With Three.js - Lesson 6”. Script Tutorials. https://script-tutorials.com/

webgl-with-three-js-lesson-6 [Retrieved 1 Mar 2024.]
[19] Three.js loaders for 3D models. https://github.com/mrdoob/three.js/tree/master/

examples/jsm/loaders [Retrieved 1 Mar 2024.]
[20] Three.js examples. https://threejs.org/examples [Retrieved 2 Mar 2024.]
[21] Showcase Worlds. Ancient Brain. https://ancientbrain.com/showcase.php [Re-

trieved 25 Feb 2024.]
[22] Mark Humphrys. 2024. ”Bringing AI APIs into the classroom with a JavaScript

coding site”, to appear in 5th International Conference on Education and Artificial
Intelligence Technologies (EAIT 2024), Oct 16, 2024 - Oct 18, 2024, London.

[23] AI programming exercises. https://ancientbrain.com/course.ai.php [Retrieved 26
Feb 2024.]

[24] ”Code! Programming with p5.js” , The Coding Train. https://www.youtube.com/
@TheCodingTrain [Retrieved 2 Mar 2024.]

[25] Ricardo Queiros. 2019. ”Learning JavaScript in a Local Playground”, 8th Sympo-
sium on Languages, Applications and Technologies (SLATE 2019).

37

https://threejs.org
https://p5js.org
https://ace.c9.io
https://ancientbrain.com/docs.php
https://github.com/kripken/ammo.js
https://github.com/ml5js/ml5-library
https://ancientbrain.com/user.php?userid=threejs
https://ancientbrain.com/user.php?userid=p5editor
https://ancientbrain.com/p5.start.php
https://ancientbrain.com/three.start.php
https://script-tutorials.com/webgl-with-three-js-lesson-6
https://script-tutorials.com/webgl-with-three-js-lesson-6
https://github.com/mrdoob/three.js/tree/master/examples/jsm/loaders
https://github.com/mrdoob/three.js/tree/master/examples/jsm/loaders
https://threejs.org/examples
https://ancientbrain.com/showcase.php
https://ancientbrain.com/course.ai.php
https://www.youtube.com/@TheCodingTrain
https://www.youtube.com/@TheCodingTrain


Ancient Brain: A JavaScript coding platform for education with 3D graphics, Websockets, AI and support for teachers ICDTE 2024, August 07–09, 2024, Berlin, Germany

[26] JavaScript tutorial at w3schools.com. https://www.w3schools.com/js/default.asp
[Retrieved 5 Mar 2024.]

[27] Ching-Yu Huang and Mayra Bachrach. 2018. ”A JavaScript Curriculum for High
School Students to Explore Computer Science”, International Journal of Informa-
tion and Education Technology, Vol. 8, no. 12 (2018).

[28] Online Javascript Editor, at tutorialspoint.com. https://www.tutorialspoint.com/
online_javascript_editor.php [Retrieved 5 Mar 2024.]

[29] The Coding Train. thecodingtrain.com [Retrieved 2 Mar 2024.]
[30] P5 editor. editor.p5js.org [Retrieved 26 Feb 2024.]
[31] Syed Omar Faruk Towaha. 2016. JavaScript Projects for Kids, Packt Publishing.

[32] Chris Strom. 2018. 3D Game Programming for Kids, 2nd edn, O’Reilly.
[33] Siddharth Dalal. 2019. Elementary JavaScript, lulu.com.
[34] Replit Teams for Education. https://docs.replit.com/category/teams-for-education

[Retrieved 10 Mar 2024.]
[35] CodePen. https://codepen.io/ [Retrieved 8 Mar 2024.]
[36] CodePen Education. https://codepen.io/features/education [Retrieved 10 Mar

2024.]
[37] ”Book chapters”. https://ancientbrain.com/user.php?userid=chapters [Retrieved

2 Mar 2024.]

38

https://www.w3schools.com/js/default.asp
https://www.tutorialspoint.com/online_javascript_editor.php
https://www.tutorialspoint.com/online_javascript_editor.php
https://docs.replit.com/category/teams-for-education
https://codepen.io/
https://codepen.io/features/education
https://ancientbrain.com/user.php?userid=chapters

	Abstract
	1 Introduction
	2 Principles for a shared coding environment
	3 JavaScript solution
	4 Ancient Brain
	5 Ancient Brain features
	5.1 Ancient Brain for teachers
	5.2 Teachers edit student code

	6 Starter tutorial: One Cube World
	7 Some collections of worlds
	7.1 Starter Worlds
	7.2 Inserting 3D models
	7.3 Showcases of student code

	8 Teaching courses
	8.1 AI course
	8.2 Intro to Coding course

	9 Related work
	10 Future work: Coding book for schools
	References

