
An Experimental System for Real-time Interaction
Between Humans and Hybrid AI Agents

John Pendlebury, Mark Humphrys, Ray Walshe
School of Computing

Dublin City University, Glasnevin
Dublin 9, Republic of Ireland

Email: jpendlebury@computing.dcu.ie

Abstract—There is an emerging belief among AI researchers
that intelligence is the product of specialised subsystems collabo-
rating in a type of network of the mind. Several prototype systems
have been developed as part of the World-Wide-Mind project [6]
that facilitate the on-line deployment of hierarchically structured,
multi-author, AI agents that we call minds. These agents function
in on-line user defined environments that we call worlds. In
this paper we describe the latest prototype system developed
as part of the World-Wide-Mind project, the XAI (Experimental
Artificial Intelligence) Server. Unlike its predecessors the XAI
Server is a multi-agent system (MAS) allowing minds to run
concurrently in the same on-line environment, facilitating inter-
mind communication, cooperation and competition.

The XAI Server also adds real-time interaction between
humans and AI agents. Along with the potential for gauging
the effectiveness of AI algorithms this raises issues relating to
timing and knowledge representation that previous prototypes
had no need to address. The XAI Server is loosely coupled with
a scheduled threading model that makes it far more scalable
than its predecessors. Capable of communicating with a standard
Web browser the XAI Server moves the responsibility for content
generation from the server to the client via a proprietary user
interface language. We demonstrate how this system works with
a sample ChatWorld and four example minds. Finally we discuss
our future plans for enhancing the system to facilitate 2D and
3D world authoring.

Keywords—Hybrid AI;Society of Mind;Multi-agent Sys-
tem;Human AI Interaction

I. INTRODUCTION

Researchers in the fields of AI and cognitive science broadly
agree that ‘intelligence’ is most likely to be the result of
numerous highly specialised subsystems collaborating in what
has been described [1] as a “Society of Mind”.

The software paradigms necessary to create an artificial
“Society of Mind” have existed for some time within the
sub-field of multi-agent systems. Many tools for constructing
multi-agent systems have been built [2] [3] [4]. The concept
of “Society” and the relationship between individuals and the
whole is modelled quite effectively within this archetype and
yet the ultimate goal, that of realising intelligence, remains
elusive.

We propose [5] that if Artificial Intelligence (AI) is to “scale
up”, it will require the collaboration of researchers from many

This paper is supported by the Irish Research Council for Science Engi-
neering and Technology

diverse disciplines across multiple laboratories. No system, or
set of tools currently exists to easily provide such a facility.
[5] describes a scenario where an algorithm is represented by
a software component which we call a ‘mind’. The problem
an algorithm addresses is represented by a second software
component that we call a ‘world’. Both worlds and minds
are deployed as servers on the Internet. An attempt to solve a
world, using a mind, can be made by a remote ‘client’ process.

In this ‘action selection’ scheme, as shown in Fig. 1, the
client retrieves the ‘state’ of a world and sends it to the mind.
In response to the state, the mind produces an ‘action’. For
example, in a world representing a two-dimensional maze,
the state may simply consist of the Cartesian coordinates
representing the mind’s current position. An action could
consist of the direction in which the mind wishes to move.

:World

:Mind

:Client

S
t
a
t
e

A
c
t
i
o
n

A
c
t
i
o
n

S
t
a
t
e

Action

State

Fig. 1. Information flow between a mind and a world controlled by a client.

The previously retrieved state and the newly retrieved action
are then sent back to the world, which produces a new state
in response. The world is effectively being asked to produce
a new state given the current state and an action. This process

continues until the world indicates that it has reached a ‘final
state’ i.e. the problem has been solved, or the time allocated
by the world to solve the problem has run out.

Third party researchers can reuse these minds as compo-
nents in their own larger minds, without necessarily consult-
ing the original mind authors. These composite minds are
constructed as hierarchies, with one mind at the top of the
hierarchy arbitrating between the actions of minds below it in
the hierarchy. To the client the hierarchical mind appears to be
a normal mind, receiving states and issuing actions. Internally,
when a hierarchical mind receives a state, it issues that state
to each of the minds directly below it.

A:Mind

S
t
a
t
e

A
c
t
i
o
n

E:MindD:Mind

B:Mind

A
c

t
i

o
n

A
c
t

i
o

n

S
t
a
t
e

S
t
a
t
e

Hierarchical Mind

A
c
t
i
o
n

A
c
t
i
o
n

S
t

a
t

e

S
t

a
t

e

C:Mind

Fig. 2. A mind hierarchy consisting of five minds with potentially five unique
authors. Only mind ‘A’ can return an action to the world via the client. It
chooses between the actions produced by minds ‘B’ and ‘C’. Mind ‘C’ must
choose between the actions of minds ‘D’ and ‘E’, but mind ‘B’ produces its
own action.

This concept is demonstrated [6] in a system that allows
a mind and world to be deployed and accessed on-line, and
subsequently in a system [7] that shows how a hierarchical
mind can be created on-line by allowing one central mind to
arbitrate between the actions of minds below it in a hierarchy.
A later system [8] demonstrated a hybrid mind consisting of
hundreds of sub-minds from hundreds of different authors.

O’Connor et al (2002) notes the speed limitations inherent in
distributing minds from worlds over the Internet. Mac Fhearaı́
et al (2011) overcome these delays by allowing a world and
mind to be executed together on a centralised server known
as the World-Wide-Mind, see Fig. 3. In this architecture the
functionality of the client, described in Fig. 1, is moved to the
server. All user interaction is via a standard web browser. The

term ‘run’ is used to describe the execution of a mind with a
world. A user initiates a run through a Web interface provided
by the World-Wide-Mind. After the run is complete, which
may take anywhere from a few seconds to several minutes,
the results are displayed in the browser. These results consist
of the states, produced by the world, and the actions, produced
by the mind, during the run.

At any point in the run, a world may output images. These
can be used to represent state. This sequence of images is
presented in the browser, with the results, when the run
terminates. The Web interface to the system allows the user to
browse the images in conjunction with the results. The World-
Wide-Mind also provides the facility to generate and download
a movie from any generated images.

:World

:Mind

:RunManager

S
t
a
t
e

A
c
t
i
o
n

A
c
t
i
o
n

S
t
a
t
e

HTTP

:Browser

H
T
T
P

Fig. 3. The World-Wide-Mind architecture has the advantage over earlier
systems that no proprietary client is required. All interaction with the system
is through a standard browser.

In this paper we describe a new system, the XAI Server
(See Fig. 4), which has several advantages over the systems
[3][4][5][6] described earlier:

1) All of the systems described up until now, including
the World-Wide-Mind have been ‘single-agent’ systems.
That is, only one mind (agent) is run with a world at
any one time. Even with hierarchical minds, consisting
of many sub-minds, only the mind at the top of the
hierarchy may issue an action to the world. The XAI
Server allows multiple minds to run in direct competition
with each other i.e. a multi-agent system. These minds
may be hierarchical in nature, or be composed of a
single mind. This introduces the possibility of inter-mind
communication and cooperation as opposed to the intra-
mind communication of the hierarchical minds described
in Fig. 2. Such interaction was impossible in the systems

[3][4][5][6] described earlier.
2) The XAI Server features the addition of direct, real-

time human interaction with worlds and minds. Users
are included in a run as ‘proxy-minds’, while their
actions are captured from a standard browser, which also
presents the state of the world to connected users in
real-time. This raises questions in terms of knowledge
representation and timing. For example, how can the
state of a generic world be represented to a user? Also,
how can user actions be mapped to actions that a generic
world and mind can interpret? Timing is an important
issue for the XAI Server. The World-Wide-Mind runs
a single mind with a world and delivers the results as
quickly as possible. Taking this approach with the XAI
Server, the user would be unable to perceive changes
in the state of the world, making real-time human
interaction impossible. Instead, the XAI Server allows
worlds to dictate their timing requirements i.e. how often
minds and users are permitted to send actions to the
world.

3) The World-Wide-Mind allows worlds to generate images
on the server and output them to the client browser. This
allows users to perceive the changing states of the world
as actions are consumed. To reduce network traffic the
XAI Server does not allow the transfer of large data
packages, such as images. Also, the server-side genera-
tion of graphics raises concerns about CPU bandwidth
and memory capacity. Instead, the XAI Server allows
worlds to describe their user interfaces textually using
a specially designed language, WUIML (World User
Interface Mark-up Language). The description of the
user interface is transmitted to the browser before the
run begins. Then only changes to the user interface are
transmitted from the server to the browser during a run.
User interface events generated by the user are captured
on the browser, sent back to the XAI Server and relayed
to the world.

Throughout the remainder of this paper the architecture and
operation of the XAI server are described. A demonstration
World, ChatWorld, and several demonstration minds for Chat-
World: ChatMind, GossipMind, JabberMind and HybridChat-
Mind, are also described.

II. XAI SERVER

This section outlines the key features of the XAI Server and
then goes on to describe how these features are implemented.

A. Key Features

The main features of the XAI Server can be described as
follows:

1) It is possible for users to access the XAI Server from a
standard browser, without the need for third party soft-
ware installation. This takes advantage of the ubiquitous
nature of Web browsers and maximises the system’s
accessibility.

R
u
n
M
a
n
a
g
e
r

:World

A:Mind

:Browser

B:Proxy-Mind

N:Mind

State

Action

State

Action

State

Action

State

Action

H
T
T
P

HTTP

Fig. 4. Information flow between a world, several minds on the XAI Server
and the client browser. Note that one of the minds involved is a ’Proxy-Mind’.

2) The XAI Server is a multi-agent system allowing mul-
tiple independent agent minds to run in competition
with each other. Inter-mind communication, outside the
hierarchical structure described in Fig. 2, is possible.
The XAI Server does not attempt to impose a structure
for inter-mind communication, but rather enables it.

3) Direct user interaction with minds is possible through
the XAI Server. In fact, this is a central concept in
the XAI Server architecture. One user initiates a “run”
by choosing a group of minds designed for a specific
world. That user then has their actions (keyboard and
mouse events) mapped to actions defined by the world
in question.

4) More than one user may interact with a group of minds
engaged in a run. As stated above one user initiates a
run. Once a run is under way its existence is visible to
all users. A user may then choose to ”join“ a run. The
run will continue for as long as at least one user remains
connected to that run.

B. Architecture

In the introduction to this paper we described minds as
algorithms. In this research, minds are software components
which produce actions in response to states. The structure of
these actions and states are defined by a world. Thus each
mind is written for a specific world, as it must understand the
structure of the states it receives and the actions it produces
in order to interact meaningfully with the world.

1) The Action Selection Loop: A world in the context of
the XAI Server is simply a container of state. A world changes
this state when it receives an action from a mind. The system
implemented by Mac Fhearaı́ et al (2011) is a single-agent
system. Therefore a world knows which mind it is receiving

an action from, as only one mind is capable of producing an
action. In the XAI Server several minds can interact with a
world simultaneously. As there are multiple sources, actions
must be qualified with an identifier for the mind that produced
the action.

Central to the functionality of the XAI Server (and indeed
the World-Wide-Mind) is the concept of a run. The term run
refers to the process of running a mind (or minds) with a
world, from the worlds initial state to some terminal state.
Exactly when this terminal state is reached is determined by
the world.

An overview of a run is described in Fig. 5 The RunManager
begins by retrieving the state from the world and delivers it
to the first mind in the sequence. This mind may produce an
action, or choose to do nothing. The action, if produced, is
then delivered to the world, but before a new state is retrieved
the world is queried as to whether it has reached its final state.
If the final state has not been reached the RunManager then
delivers that state to the next mind in the sequence. Having
updated all minds the RunManager sleeps before continuing
the process all over again.

The duration for which the RunManager sleeps is a function
of the world. Each world must implement the World interface.
This interface defines several functions, one of which is the
getUpdatePeriod() function. This function returns the time in
milliseconds that the RunManager must sleep for.

:RunManager :World :Mind

getState()

state

getAction(state)

getState(action)

action

finished = inFinalState()

loop

[finished == false]

1

2

3

4

1 n

Fig. 5. A run orchestrated by the RunManager.

2) Threading Model: Roth (2007) explains that the naive
approach to server design i.e. utilising one dedicated thread per
connection, is not optimal. Under this scheme threads spend
a significant amount of their life waiting. He notes that a one-
to-one relationship between the number of worker threads and
the number of client connections limits scalability.

This situation is analogous to our own environment. In
the previous section we noted that the RunManager sleeps
periodically based on the timing requirements of the world. If
we dedicate one thread to each run this would limit the number
of concurrent runs to the number of worker threads. As with
any resource the number of worker threads is a limited one.
Hence scalability becomes compromised.

To increase scalability the RunManager utilises a scheduled
thread pool. Each run is scheduled according to the require-
ments dictated by the world involved in the run. In place of
a continuous loop we now have a situation where a run is
periodically serviced by a worker thread. When a thread has
finished servicing a run it returns to the thread pool where it
may be utilised to service another run, perhaps even the same
run. The key point is that we no longer have a one-to-one
relationship between the number of worker threads and the
number of runs.

3) Low level User Interactions: Unlike the actions of
minds, user actions will arrive asynchronously. However, from
our architectural point of view we can treat a user as simply
another mind in the sequence of minds. To facilitate this the
concept of an asynchronous mind is introduced, see Fig. 6. An
asynchronous mind is a mind with an associated action queue,
which acts as a proxy for a user within the system. The action
queue performs a buffer function between the mind and user
until the mind can be queried.

Fig. 6. A user proxy mind delivering i actions to a world.

The user input subsystem receives an action some time after
it is performed by a user. This action is stored in the action
queue associated with the user’s proxy asynchronous mind.
The action is processed when the proxy mind is queried by
the RunManager.

C. Representing the State of a Generic World in WUIML

In order for a user to be able to access the system via
a standard browser without having to install any third-party
software the state of a world must be delivered to the users
browser in a language that browsers understand, namely Hy-
pertext Markup Language (HTML). Alternatively, the state of
the world can be delivered to the browser in a proprietary
format and, transformed into HTML within the browser.

To allow the XAI Server to be easily extended and enhanced
in the future we would like the interface between the browser
and the system to be loosely coupled. This means that we
cannot afford to tie the development to a client specific

language such as HTML. A better approach would be to
allow worlds to represent their user interface in a client
independent form that could be easily transformed into any
client-side representation. This would necessitate the client
taking responsibility for performing such transformations.

There are many client independent user interface definition
languages in existence. UIML [10], XUL [11] are just two
examples. Both these languages have an associated learning
curve and are far more complex than is necessary for our cur-
rent development needs. The World-Wide-Mind [9] maintains
a low barrier to entry for researchers, allowing moderately
skilled programmers to successfully build minds and worlds
for the system. We wish to emulate and build on this success.
To facilitate this we developed our own client independent user
interface definition language, WUIML.

WUIML is an acronym for World User Interface Markup
Language. Although currently in development, it is mature
enough to allow development of the demonstration world,
ChatWorld. WUIML is an XML based markup language
allowing it to be readily transformed into a client specific
language. It defines several tags and attributes that allow
elaborate layouts of user interface artefacts such as text areas,
text inputs and buttons.

1) WUIML Windows: WUIML Windows are the basic ele-
ments of the WUIML language. A window defines the width
and height of the worlds user interface and contains all other
elements, directly or indirectly. Window tags only contain
WUIML screen tags directly. A WUIML snippet containing a
screen element contained within a window element is shown
in Listing 1.

1 <window id=’window_01’
2 width=800
3 height=600>
4 <screen id=’screen_01’>
5 <!-- More elements are placed here -->
6 </screen>
7 </window>

Listing 1. A window element containing a screen element.

2) WUIML Screens: Only one screen may be visible to the
user at any one time. By default the first screen declared is
automatically visible. Subsequent screens, and any elements
contained in those screens, are hidden by default. Thus, user
interface elements can be hidden until needed. Screens are
automatically sized to match the width and height of the
window. Each screen tag must contain at least one layer tag.
See Listing 2.

1 <window id=’window_01’
2 width=800
3 height=600>
4 <screen id=’screen_01’>
5 <!--Visible elements are placed here -->
6 </screen>
7 <screen id=’screen_02’>
8 <!-- Hidden elements are placed here-->
9 </screen>

10 </window>

Listing 2. A window element containing two screen elements.

3) WUIML Layers: Layers allow stacking of WUIML
elements in the z-direction i.e. each layer is displayed above
the previous one. See Listing 3. This allows for some quite
complex user interface designs to be achieved. Layers contain
only panel elements. Layers are the width and height of their
containing screen.

1 <window id=’window_01’
2 width=800
3 height=600>
4 <screen id=’screen_01’>
5 <layer id=’layer_01’>
6 <!--
7 Elements displayed at lowest z order 0
8 -->
9 </layer>

10 <layer id=’layer_02’>
11 <!--
12 Elements displayed at next z order 1
13 -->
14 </layer>
15 </screen>
16 </window>

Listing 3. A screen element containing two layer elements.

4) WUIML Panels: Panels are the WUIML elements which
allow elements to be positioned. They have a width and height
specified as a percentage of their containers dimensions and
can be aligned vertically and horizontally. They are centred by
default. Listing 4 shows a panel which is 50% the width and
height of its container. It is horizontally centered by default,
but vertically aligned to the top of its container.

1 <window id=’window_01’
2 width=800
3 height=600>
4 <screen id=’screen_01’>
5 <layer id=’layer_01’>
6 <panel width=50 height=50 valign=top>
7 <!--
8 Controls placed here.
9 -->

10 </panel>
11 </layer>
12 </screen>
13 </window>

Listing 4. A panel aligned to the top of its containing layer.

5) WUIML Controls: The remaining WUIML tags define
controls, such as text areas, text inputs and buttons. All
controls must be contained within a panel. Listing 5 shows a
text input which is 90% the width and height of its containing
panel.

1 <window id=’window_01’
2 width=800
3 height=600>
4 <screen id=’screen_01’>
5 <layer id=’layer_01’>
6 <panel width=50 height=50 valign=top>
7 <input id=’input_01’
8 width=90 height=90/>
9 </panel>

10 </layer>
11 </screen>
12 </window>

Listing 5. A panel containing a text input.

D. The WUIML API

In order to speed the development of world user interfaces
an API (Application Programming Interface) has been devel-
oped. Written in Java this interface allows world developers
to define the user interface for their world. Below is example
Java code showing how ChatWorld defines its user interface.

1

2 WUIMLWindow win = new WUIMLWindow(800,600);

3 WUIMLScreen screen = new WUIMLScreen();

4 WUIMLLayer layer = new WUIMLLayer();

5

6 WUIMLPanel panelMain = new WUIMLPanel(100,100);

7 WUIMLPanel panelMainTop = new WUIMLPanel(100,75,

8 WUIMLAlign.CENTER,WUIMLAlign.TOP);

9 WUIMLPanel panelMainBottom = new WUIMLPanel(100,25,

10 WUIMLAlign.CENTER,WUIMLAlign.BOTTOM);

11 WUIMLPanel panelMainBottomLeft = new WUIMLPanel(100,25,

12 WUIMLAlign.LEFT,WUIMLAlign.CENTER);

13 WUIMLPanel panelMainBottomRight = new WUIMLPanel(100,25,

14 WUIMLAlign.RIGHT,WUIMLAlign.CENTER);

15

16 WUIMLTextArea text = new WUIMLTextArea(50,50,true);
17 WUIMLTextInput input = new WUIMLTextInput(50,

18 WUIMLAlign.CENTER,WUIMLAlign.BOTTOM);

19

20 WUIMLButton sendButton = new WUIMLButton("Send");

21 WUIMLFieldMap fieldMap = new WUIMLFieldMap();

22 fieldMap.put("msg", input);

23 sendButton.map(o n c l i c k , s a y ,fieldMap);

24

25 panelMain.addChild(panelMainTop);

26 panelMain.addChild(panelMainBottom);

27

28 panelMainTop.addChild(text);

29 panelMainBottom.addChild(panelMainBottomLeft);

30 panelMainBottom.addChild(panelMainBottomRight);

31 panelMainBottomLeft.addChild(input);

32 panelMainBottomRight.addChild(sendButton);

33

34 layer.addChild(panelMain);

35 screen.addChild(layer);

36 win.addChild(screen);

37 WUIMLDocument doc = new WUIMLDocument();

38 doc.addChild(win);

Listing 6. WUIML API code to create the ChatWorld user interface.

Fig. 7. The layout resulting from the code in Listing 6.

This simple, easy-to-use API obviates the need for devel-
opers to learn a proprietary syntax, such as WUIML. Instead
even those moderately familiar with Java programming may
use the API to create quite sophisticated user interfaces.

Fig. 7 shows the user interface resulting from the code
shown in Listing 6. Listing 7 below contains the WUIML
generated from the code in Listing 6. It is this WUIML that
is sent to and interpreted by the browser to produce the user
interface for ChatWorld.

1 <wuiml>
2 <window id=’window_01’ width=’800’
3 height=’600’>
4 <screen id=’screen_01’>
5 <layer id=’layer_01’>
6 <panel id=’panel_01’ width=’100’ height=’100’
7 align=’center’
8 valign=’center’>
9 <panel id=’panel_02’ width=’100’ height=’80’

10 align=’center’
11 valign=’top’>
12 <input id=’input_01’
13 width=’50’
14 align=’center’
15 valign=’center’/>
16 </panel>
17 <panel id=’panel_03’ width=’100’ height=’20’
18 align=’center’
19 valign=’bottom’>
20 <panel id=’panel_04’
21 width=’80’
22 height=’100’>
23 <input id=’input_02’ width=’50’
24 align=’center’
25 valign=’center’/>
26 </panel>
27 <panel id=’panel_05’
28 width=’20’
29 height=’100’>
30 <button
31 id=’button_01’
32 text=’send’
33 onclick=’send:msg:input_02’/>
34 </panel>
35 </panel>
36 </panel>
37 </layer>
38 </screen>
39 </window>
40 </wuiml>

Listing 7. The WUIML behind the layout shown in Fig. 7.

E. Delivering the user interface to and receiving events from
the browser.

Fig. 7 shows the resulting output for the code in Listing 6.
Listing 7 illustrates the WUIML used to produce this output.
How this user interface gets delivered to the browser and how
events, such as button clicks, get returned to the running world
is described in this section.

1) Delivering the User Interface to the Browser: Each
world created by a user is required to implement the World
interface. One of the methods the World interface defines is
the ‘getRunProfile’ method. This method returns an instance
of the RunProfile class, which is a wrapper class for, among
other things, a WUIML document.

When a user chooses a number of minds and a world to
run, that information is sent to the XAI Server as a run request

Fig. 8. User interface creation on the client.

description, see Fig. 8. The XAI Server will create instances of
the world and the minds to run, before returning the RunProfile
for the world and a run id to the browser. On the browser
a JavaScript library called xai.js interprets the WUIML and
produces HTML. It also provides JavaScript code to act as
event listeners. When one of those event listeners fires it
produces an action event as shown in Fig. 6.

2) Receiving Events From the Browser: Listing 8 repeats a
section of code from Listing 6 that describes how the action
event is generated.

1 WUIMLButton sendButton = new WUIMLButton("Send");

2 WUIMLFieldMap fieldMap = new WUIMLFieldMap();

3 fieldMap.put("msg", input);

4 sendButton.map(o n c l i c k , s a y ,fieldMap);

Listing 8. Mapping WUIML elements to action events.

The WUIMLFieldMap maps an action event field name to
a control. In this case the action event field named ‘msg’ is
mapped to the input control. The call to the map method of the
Button class maps the onclick event of the button to the action
event called ‘say’ with the parameter names ‘msg’ equal to the
value of the input. This will produce the action event shown
in Listing 9.

1 <action mindid="4"
2 id="say"
3 params="msg:Hello There!"/>

Listing 9. An XML representation of an action.

The Action shown here can be interpreted as, the mind with
the id equal to “4” performed an action called “say” with a
parameter called “msg” that was equal to “Hello There!”. The
action and params attribute are only meaningful to the world
that created them, which is correct as the XAI Server only
acts as a conduit for this information. It does not attempt to
interpret the information. This is utilised in our ChatWorld
implementation described later.

3) Efficient client server communication: All of the inter-
actions presented so far between the browser and the XAI
Server have involved the browser initiating communication to

the XAI Server. Browsers communicate with servers using
HTTP (HyperText Transport Protocol). A HTTP connection
is made to the server. The browser sends a request, waits for a
response and then drops the connection. Setting up and tearing
down such connections is a time intensive process and HTTP
1.1 [12] specifies that a client should only maintain at most
two connections to a server at any one time. These issues with
this model of communication are addressed in the XAI Server.

Having the browser initiate communication to the XAI
Server for run setup is acceptable because it happens infre-
quently (only once in the life cycle of the run), but, user
interface events will happen frequently and there is a need
to send frequent updates to the user interface elements on
the browser so that state changes are detected by the user.
The ChatWorld implementation ensures updates happen once
every second, but worlds requiring more frequent updating
are easily conceivable. For example, any world wishing to
simulate character interactions in 2D or 3D environments
would need tens of updates every second. This would quickly
become unmanageable using the conventional HTTP request
response mechanism as setting up a HTTP connection and
tearing it down is a time intensive process.

The solution to the faster update problem is a full duplex
communication channel between the browser and the XAI
Server. Fortunately a mechanism exists to provide this in the
form of CometD [13].

CometD operates over HTTP and transparently provides
a full duplex communication channel from client to server.
How this is achieved is beyond the scope of this document.
Interested readers are directed to the CometD documentation
[13].

Even though a mechanism exists for full duplex commu-
nication channels the user may wish to have more than one
run progressing from within the browser simultaneously. An
account must be taken of the two connection limit imposed
by HTTP 1.1. If a CometD connection is opened to the server
for each run a limit of two connections per client browser
is possible. Even though not all browsers enforce the two
connection limit the system must allow for the situation to
occur. Instead of creating a new CometD connection each time
the user initiates a run, a single CometD connection channel
is used to multiplex the run event actions and UI updates over
this channel.

Within the JavaScript library, xai.js a global CometD con-
nection object is stored. When a user first initiates a run,
the CometD connection is opened. Internally the XAI Server
maintains a list of run ids assigned to each client. Clients are
identified by their CometD client id. A run id is returned to
the client in response to each run request. All information to
and from the server in relation to this run after this point must
contain this run id.

CometD allows the XAI Server to detect when a client
disconnects by firing a disconnect event. The XAI Server
detects this event and removes a user from the list of users
connected to a run. The users proxy mind is also removed
from the run and the associated world is notified through the

Fig. 9. Sequence of events for run creation

‘removeMind’ method defined in the World interface. If a run
looses all connected users then it is removed.

Once a run has been initiated (See Fig. 9) users can request
to join the run (See Fig. 10). When this occurs the client id
for that user is added to the list of clients involved in the
run. A new AsynchronousMind is set up for the client and the
world is notified that a new mind has been added through the
‘addMind(int id)’ method defined in the World interface.

Fig. 10. Sequence of events for joining a run

III. DEMONSTRATION WORLDS AND MINDS

This section describes the demonstration world developed
for the XAI Server and the worlds interaction with the four
demonstration minds: ChatMind, GossipMind, JabberMind
and HybridChatMind.

A. ChatWorld

The XAI Server does not try to impose a structure on
communication between the world and minds. However, some
structure is necessary to allow instances of AsynchronousMind
to format actions to the world.

As described in Listing 9 an action has an identifier and
parameters. The identifier we used in that example was “say”.
In reality this identifier is an integer defined by ChatWorld.
The parameter list is a JSON (JavaScript Object Notation) [16]
object. This is a structure that is easy to parse and generate.
Fig. 11 shows a representation of a typical Action object that
ChatWorld would receive from a mind designed to interoperate
with it.

Fig. 11. A typical action object received by ChatWorld.

All action objects in the XAI Server will have an action
field and a mindID field. The only field unique to ChatWorld
actions is ‘msg’. Although actions have some format imposed,
the state of a world requires no special format. Coincidentally
ChatWorld imposes a JSON format on its state. The ChatWorld
state object contains an array of the last ten messages sent by
minds. An example of this is given in Fig. 12.

Fig. 12. A ChatWorld state object.

The state above in Fig. 12 shows the first five comments in
a run including two minds and one user.

B. ChatWorld Minds

The minds designed for ChatWorld are capable of producing
Actions and understanding States as described previously.

1) ChatMind: When ChatMind receives a state from an
instance of ChatWorld it looks at the last comment and
identifies the mind responsible for that comment. An internal
list of strings is scanned and one is found with the greatest
number of words in common with the comment. A string is
produced consisting of the id of the mind that made the last
comment and the new string.

2) JabberMind: JabberMind simply produces a random
string from a list of internal strings each time it is asked for
an action.

3) GossipMind: GossipMind chooses a random number
between 1 and 10. If the number is greater than 5 it simply
repeats the last comment made. Otherwise it picks a string
from a list stored internally.

4) HybridChatMind: HybridChatMind is a hierarchical
mind. It stores three instances of minds internally, one of each
type of mind described here. When asked to produce an action
HybridChatMind chooses randomly between its three internal
minds and returns whatever that mind returns.

IV. CONCLUSION

Current development on the XAI Server has highlighted
several areas for future development and improvement of the
system:

1) WUIML will be extended to support 2DCanvas and
3DCanvas elements. These can be implemented on
the existing browser framework. HTML5 [14] supports
a canvas element and WebGL [15] adds support for
native 3D rendering within browsers. This will allow
researchers to develop worlds that generate 2D and 3D
geometric representations of their states. It will also help
to provide a richer user experience.

2) We envisage that, over time, a large reservoir of worlds
and minds will develop naturally as the XAI Server
matures and gathers a strong user community.

3) The addition of third party libraries will be extremely
useful. 2D and 3D physics engines would allow worlds
to produce more interesting simulations. Audio would
add a completely new dimension to the user experience,
and would be valuable in simulating real-world environ-
ments.

4) All communication between the browser and XAI Server
is over HTTP currently. HTTP offers reliability, but at
the cost of bandwidth. However, if updates from the
server to the client are very frequent (as they would
need to be in a 3D simulation) it may be acceptable
to lose information on the basis that the information
will be retransmitted later. A facility to allow lossy
communication would reduce network bandwidth re-
quirements. Another possibility which would reduce
network bandwidth requirements would be a form of
fast compression.

5) The scheduling scheme currently in use does not place
any restriction on the time taken for minds to produce
actions. This could potentially allow minds to monopo-
lise threads. A more sophisticated scheduling scheme is

necessary where a worker thread servicing a mind can
be pre-empted should the mind attempt to monopolise
the thread.

6) Large scale testing of the system will help define upper
boundaries for both the number of minds, the number of
users in a single run and the number of runs on a single
server instance.

With the ChatWorld example we demonstrated that the XAI
Server can emulate the functionality of a simple ChatBot.
Minds consisting of a single component and minds consisting
of a hierarchical structure have been demonstrated. The XAI
Server system also has the ability to run several minds in a
world concurrently.

We have shown how WUIML can be used to deliver “world
defined” user interfaces to a standard browser and how such a
user interface can be used to allow users to interact in real-time
with minds and worlds executing on the XAI Server. Multiple
user interactions have also been shown to be feasible.

REFERENCES

[1] Minsky, M. “The Society of Mind”, Simon and Schuster, 1985.
[2] Gasser, L. Braganza C. Herman N. “MACE: ’A flexible testbed for

distributed AI research.’, In “Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence“, Addison-Wesley, 1999.

[3] Wooldridge, M. Vandekerckhove, D. ,“MYWORLD: An Agent-
Orientated TestBed for Distributed Artificial Intelligence” Proceedings
of the 1993 Workshop on Cooperating Knowledge Based Systems, 1993.

[4] Reticular Systems Inc. ,“AgentBuilder: An Integrated Toolkit for Con-
structing Intelligent Software Agents” White Paper, April, 2012.

[5] Humphrys, M.,“The World-Wide-Mind: Draft Proposal” Dublin City
University, School of Computing, Technical Report no. CA-0301, Feb
2001.

[6] Walshe, R. Humphrys, M. First Implementation of the World-Wide-
Mind, poster in Advances in Artificial Life: Proceedings of the 6th
European Conference on Artificial Life (ECAL 01), Prague, Czech
Republic, Sept 2001.

[7] O’Connor, D. Humphrys, M. The implementation of a Distributed
Hierarchical Mind on the Internet using the World-Wide-Mind, Dublin
City University , School of Computing, Technical Report no. CA-0302.

[8] O’Leary, C. Humphrys, M. Walshe, R. Constructing an animat mind
using 505 sub-minds from 234 different authors, Proc. 8th Int. Conf. on
Simulation of Adaptive Behavior (SAB-04), July 2004, Los Angeles,
CA.

[9] Mac Fhearaı́, O. Humphrys, M. Walshe, R. A High-Speed Architec-
ture For Building Hybrid Minds, poster presented at 3rd International
Conference on Agents and Artificial Intelligence (ICART 2011), Rome,
Italy, 28-30 Jan 2011.

[10] OASIS. (2007) UIML Working Draft. [Online]. Available:
http://www.oasis-open.org/committees/download.php/28457/uiml-
4.0-cd01.pdf

[11] Mozilla Developer Network. (2012) XUL Documentation. [Online].
Available: https://developer.mozilla.org/en/XUL

[12] The Internet Society. (1999) Request for Comments: 2616. [Online].
Available: http://www.w3.org/Protocols/rfc2616/rfc2616.html

[13] Bordet, S. (2011) The CometD Reference Book. [Online]. Available:
http://docs.cometd.org/reference/

[14] W3C (2012) W3C Working Draft. [Online]. Available:
http://www.w3.org/TR/html5/

[15] Khronos Group (2012) WebGL Specification. [Online]. Available:
http://www.khronos.org/registry/webgl/specs/latest/

[16] Ecma International (2011) ECMAScript Language
Specification. [Online]. Available: http://www.ecma-
international.org/publications/files/ecma-st/ECMA-262.pdf

[17] Roth, G. (2007) Architecture of a Highly
Scalable NIO-Based Server. [Online].
Available:http://today.java.net/pub/a/today/2007/02/13/architecture-
of-highly-scalable-nio-server.html

